Higher Engineering Mathematics

 





Newnes is an imprint of Elsevier 
The Boulevard, LangfordLane, Kidlington, Oxford OX51GB, UK 
30 Corporate Drive, Suite 400, Burlington, MA 01803,USA

First edition 2010

Copyright © 2010, JohnBird, PublishedbyElsevier Ltd. All rights reserved. The right of JohnBird to be identiļ¬edas the author of this work has beenassertedin accordancewith the Copyright, Designs andPatents Act 1988.
No part of this publication may be reproduced,stored in a retrieval systemor transmitted in any form or by any means electronic, mechanical,photocopying,recordingor otherwise without the prior written permissionof the publisher.
Permissions may be soughtdirectly from Elsevier’s Science& TechnologyRights Department in Oxford. 



CONTENTS

    Preface
   Syllabus guidance
1 Algebra 
2 Partial fractions 
3 Logarithms 
4 Exponential functions 
  Revision Test 1 
5 Hyperbolic functions
6 Arithmetic and geometric progressions
7 The binomial series
  Revision Test2
8 Maclaurin’s series 
9 Solving equations by iterative methods
10 Binary, octal  and hexadecimal 
  Revision Test3
11 Introduction to trigonometry
12 Cartesian and polar co-ordinates
13 The circle and its properties
   RevisionTest4
14 Trigonometric waveforms
15 Trigonometric identities and equations
16 The relationship between trigonometric and hyperbolic functions
17 Compound angles 
   RevisionTest5
18 Functions and their curves
19 Irregular are as, volumes and mean values of waveforms
   RevisionTest6
20 Complex numbers 
21 De Moivre’s theorem
22 The theory of matrices and determinants
23 The solution of simultaneous equations by matrices and determinants
   Revision Test7 
24 Vectors
25 Methods of adding alternating waveforms
26 Scalar and vector products
   Revision Test8
27 Methods of differentiation
28 Some applications of differentiation 
29 Differentiation of parametric equations 
30 Differentiation of implicit functions 
31 Logarithmic differentiation 
   RevisionTest9
32 Differentiation of hyperbolic functions
33 Differentiation of inverse trigonometric and hyperbolic functions
33 Differentiation of inverse trigonometric and hyperbolic functions 
34 Partial differentiation
35 Total differential, rates of change and small changes 
36 Maxima, minima and saddle points for functions of two variables 
   RevisionTest10
37 Standard integration 
38 Some applications of integration 
39 Integration using algebraic substitutions
RevisionTest11
40 Integration using trigonometric and hyperbolic substitutions 
41 Integration using partial fractions 
42 The t=tan
Īø 2
substitution 
   Revision Test12 
43 Integration by parts 
44 Reduction formulae 
45 Numerical integration 
   Revision Test13 
46 Solution of ļ¬rst order differential equations by separation of variables
47 Homogeneous ļ¬rst order differential equations 
48 Linear ļ¬rst order differential equations 
49 Numerical methods for ļ¬rst order differential equations 
   Revision Test14 
50 Second order differential equations of the form 
51 Second order differential equations of the form 
52 Power series methods of solving ordinary differential equations 
53 An introduction to partial differential equations
   RevisionTest15
54 Presentation of statistical data 
55 Measures of central tendency and dispersion 
56 Probability 
   RevisionTest16
57 The binomial and Poisson distributions 
58 The normal distribution
59 Linear correlation 
60 Linear regression 
61 Introduction to Laplace transforms 
62 Properties of Laplace transforms 
63 Inverse Laplace transforms 
64 The solution of differential equations using Laplace transforms 
65 The solution of simultaneous differential equations using Laplace transforms
Revision Test18 
66 Fourier series for periodic functions of period2Ļ€ 
67 Fourier series for a non-periodic function over range2Ļ€
68 Even and odd functions and half-range Fourier series 
69 Fourier series over any range 
70 A numerical method of harmonic analysis
71 The complex or exponential form of a Fourier series
  Revision Test19 
  Essential formulae 
  Index 



Post a Comment

0 Comments